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Chapter 1

Inequalities: A brief Introduction

1.1 Introduction

In this handout, We will be introducing you to some definitions such as homogenity, cyclicity,
etc... and some inequalities such as AM-GM-HM, Cauchy Schwartz, etc... We will catch up with
some elementary examples followed by some practice problems to ensure that the reader fully
understands the concept of inequalities. This is intended for readers who are quite experienced
with inequalities and most importantly, have the love and interest for inequalities.

1.2 Theory and Examples

In this section, we will be covering some important definitions and some of the important aspects
in inequalities, such as AM-GM Inequality, Cauchy - Schwartz Inequality, Holder’s Inequality and
many more. Nevertheless, every inequality will consist at least 4 to 5 examples to be followed
with.

1.2.1 Definitions

In this subsection, we give you some important definitions which we will be using in this handout.
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Definition (Cyclic)— We say that an expression f (a1,a2, ...,an) is cyclic, if for any circular
arrangement ai1 ,ai2 , ...,ain of a1,a2, ...,an, we have

f (a1,a2, ...,an) = f (ai1 ,ai2, ...,ain)

and the above equality fails for any non-circular arrangement of a1,a2, ...,an. For example:

f (x,y,z) = x(y− z)+ y(z− x)+ z(x− y)

is cyclic.

A cyclic equality is an equality f (x,y,z)= 0 such that you can substitute (a,b,c)= (g(x,y),g(y,z),g(z,x))
for some g(r,s) into the equation and get a symmetric equation.

In case of cyclic inequalities can we assume a = max(a,b,c) without loss of generality. Since
all "consecutive" variable pairs (x,y),(y,z) and (z,x) are used in the inequality, the order of the
variables matters, but the "rotation" doesn’t and that’s why you can set a = max(a,b,c).

Definition (Symmetric)— We say that an expression f (a1,a2, ...,an) is symmetric if for any
permutation i1, i2, ..., in of 1,2,3, ...,n, we have

f (a1,a2, ...,an) = f (ai1,ai2, ...,ain)

For example,
f (x,y,z) = xy+ yz+ zx

is a symmetric function.

Definition (Homogeneous)— We say that an inequality is homogeneous, if all the terms in the
inequality have same degree. An inequality involving (multidimensional) polynomials is said to be
homogeneous if all the polynomials have the same degree. For example

1+
x
y
+

y
x
≥ 3

is a homogeneous inequality.

Remark. This concept of homogeneity is often used in inequalities so that one can "scale" the
terms (this is possible because f (ta1, ta2, ..., tan) = tk f (a1,a2, ...,an) for some fixed k), and assume
things like the sum of the involved variables is 1, for things like Jensen’s Inequality.

The concept of homogenizing is based on rewriting the number 1 (in most cases, but any other
number can also be used) in terms of our variables (and the given conditions) in a convenient
way. We know which such expressions we can make use out of by looking at the degree that we
want to obtain. So, we want the highest degree of an already present term.
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Definition (Normalization)— We first need to clarify the difference between homogeneous
functions and non-homogeneous functions. In this case, a condition between variables
x1,x2, . . . ,xn such as x1 + x2 + . . .+ xn = n or x1x2. . . xn = 1 is meaningless (because we can
divide (or multiply) each variable by arbitrary real numbers but the result of the problem is not
affected).

Normalisation refers to transforming variables into constants, such as assuming the sum or
product of the variables to be 1. One can also interpret it as the reverse process of
homogenisation.

Definition (Increasing and Strictly Increasing Functions)— We say that a function f is
increasing on a bound [a,b] if for any x,y ∈ [a,b] such that x≤ y we have f (x)≤ f (y). f is
strictly increasing if the inequality becomes strict.

Definition (Decreasing and Strictly Decreasing Functions)— We say that a function f is
decreasing on a bound [a,b] if for any x,y ∈ [a.b] such that x≤ y, then we have f (x)≥ f (y). f
is strictly increasing if the inequality becomes strict.

Definition (Convex and Concave)— We say that a function f (x) defined on the interval [a,b]
is convex if there exist two points x1,x2 in [a,b] and 0 < λ < 1 for which

f [λx1 +(1−λ )x2]≤ λ f (x1)+(1−λ ) f (x2)

The function is concave when the inequality sign reverses.

That brings to the end of the definitions, and now we can start learning some new inequalities
and solve problems.

1.2.2 Trivial Inequality

The trivial inequality states that if x is a real number, then x2 ≥ 0. Well, this seems obvious, but
this is the root to many other inequalities. From this, the most important result holds,

a2
1 +a2

2 + ...+a2
n ≥ 0

for a1,a2, ...,an ∈ R, with equality if and only if a1 = a2 = ...= an = 0. This result is called the
Sum of Squares Inequality, and the equality case is called the Sum of Squares Identity. In this
handout, we will be using "SOS" in the place of "Sum of Squares" for simplicity. Now that we



Theory and Examples Trivial Inequality 5

are familiar with SOS Inequality and Identity, we can now move forward to some interesting
examples.

Problem 1.2.1. Let a,b,c be non-negative real numbers. Prove that

a3 +b3 + c3 ≥ 3abc

Solution. We will make use of the identity that

a3 +b3 + c3−3abc = (a+b+ c)(a2 +b2 + c2−ab−bc− ca)

Since a+b+ c≥ 0, it suffices to prove that a2 +b2 + c2−ab−bc− ca≥ 0. Noting that

a2 +b2 + c2−ab−bc− ca =
1
2
[(a−b)2 +(b− c)2 +(c−a)2]

the inequality follows due to SOS inequality. Equality holds if and only if a− b = b− c =
c−a = 0 or a = b = c.

Problem 1.2.2. Is it possible to write b2− 2bc+ c2 + 1− (bc− b− c)2 as the sum of squares
each real?

Solution. The answer is no. Because, if the above expression can be written as the sum
of squares, then the above expression should be non-negative for all values of b and c. But
when b = c = 3, then the above expression values to −8 which contradicts the assumption
that the above expression can be written as the sum of squares.

Problem 1.2.3. Let a,b,c be non-negative real numbers. Prove that

a2 +b2 + c2 +2abc+1≥ 2(ab+bc+ ca).

Solution. We can rewrite the above expression as,

2ab[(a+bc−b− c)2 +(c−1)2]+ c(b−1)2[(a+b− c)2 +1]
2ab+ c(b−1)2

which is clearly non-negative. Equality holds if and only if a = b = c = 1.

Problem 1.2.4 (2018 Romania TST). Given real numbers x1,x2, . . . ,xn ≥−1 and
x3

1+x3
2+ . . .+x3

n = 0, find the best constant c for which the inequality x2
1+x2

2+ ...+x2
n ≤ cn holds

true for all tuples x1,x2, ...,xn.
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Solution. The key idea is that for any real x such that x ≥ −1, (x− 2)2(x+ 1) ≥ 0. So,

we have x2 ≤ 4
3
+

x3

3
, and thus

n

∑
i=1

x2
i ≤

n

∑
i=1

4
3
+

x3
i

3
=

4n
3
, and so we conclude that c = 4

3 .

Equality holds if and only if 9|n and 8
9 of them are −1 and the remaining are 2.

Problem 1.2.5. Find all n > 1 such that

x2
1 + x2

2 + ...+ x2
n ≥ xn(x1 + x2 + ...+ xn−1)

for all real numbers x1,x2, ...,xn.

Solution. The above inequality rewrites as,

x2
1− x1xn + x2

2− x2xn + ...+ x2
n−1 + xn−1xn + x2

n ≥ 0

or (
x1−

xn

2

)2
+
(

x2−
xn

2

)2
+ ...+

(
xn−1 +

xn

2

)2
+ x2

n−
n−1

4
x2

n ≥ 0

or (
x1−

xn

2

)2
+
(

x2−
xn

2

)2
+ ...+

(
xn−1 +

xn

2

)2
≥ n−5

4
x2

n

Clearly for n = 2,3,4,5, the right hand side is non-negative and the right hand side is non-
positive. If n > 5, then we can choose

x1 = x2 = ...= xn−1 =
xn

2
,xn = 1

and the inequality does not hold true. Thus, the only values for n are 2,3,4,5.

Problem 1.2.6 (sqing). Let a,b be positive real numbers. Prove that

a2 +b2 ≥ a2 +b2 +2a2b2

ab+1
≥ 2ab

Solution. Subtracting 2ab on both sides, the inequality rewrites as

(a−b)2 ≥ (a−b)2

ab+1
≥ 0

which reduces to ab(a−b)2 ≥ 0 which is obviously true. Equality holds if and only if a = b.
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Problem 1.2.7. (Mathlinks) Let a,b be real numbers such that

ab(a2−b2) = a2 +b2 +1

Find the minimum of a2 +b2

Solution. Using polar co-ordinates, i.e.

a = r cosα,b = r sinα,r > 0,α ∈ [0,2π)

we see that the given condition becomes

1+ r2 = r4 sinα cosα(cos2
α− sin2

α) = r4.
sin4α

4
≤ r4

4

which means that
r4−4r2−4≥ 0 ⇐⇒ (r2−2)2−8≥ 0

⇐⇒
(

r2−2−2
√

2
)(

r2−2+2
√

2
)
≥ 0

Therefore
a2 +b2 = r2 ≥ 2

(
1+
√

2
)

Equality holds if and only if r =
√

2(1+
√

2) and α ∈
{

π

8
,
5π

8
,
9π

8
,
13π

8

}

Problem 1.2.8 (1997 USAMO). Let a,b,c be positive real numbers. Prove that

∑
cyc

1
a3 +b3 +abc

≤ 1
abc

Solution. We first claim that
a3 +b3 ≥ a2b+ab2

This is obviously true, since

a3 +b3 ≥ a2b+ab2 ⇐⇒ (a+b)(a−b)2 ≥ 0

Now, observe that

∑
cyc

1
a3 +b3 +abc

≤∑
cyc

1
a2b+ab2 +abc

= ∑
cyc

a
abc(a+b+ c)

=
1

abc

as desired. Equality holds if and only if a = b = c.
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1.2.3 AM-GM-HM Inequality

Theorem 1.2.1 (AM-GM-HM Inequality) — For positive reals a1,a2, ...,an, we have

a1 +a2 + ...+an

n
≥ n
√

a1a2...an ≥
n

1
a1
+ 1

a2
+ ...+ 1

an

Remark: It should be noted that AM-GM works for non-negative reals while AM-HM requires
them to be positive.

The AM-GM-HM inequality creates an inequality connection between the well known Arithmetic,
Geometric and Harmonic Means in that order. The AM-GM-HM Inequality, especially the AM-
GM Inequality is one of the most important inequalities for mathematical competitions. In this
section, we will cover some diverse examples based on the AM-GM-HM Inequality. Now that the
definition is clear, we can move on to some examples.

Problem 1.2.9. Let a,b,c be positive real numbers. Prove that

(a2b+b2c+ c2a)(ab2 +bc2 + ca2)≥ 3abc(a2(b+ c)+b2(c+a)+ c2(a+b)−3abc)

Solution. Let x = a2b+b2c+ c2a, y = ab2 +bc2 + ca2 and z = 3abc. Then, it suffices to
prove that

xy≥ z(x+ y− z)

or
(x− z)(y− z)≥ 0

Now, by the AM-GM Inequality,

a2b+b2c+ c2a≥ 3 3
√

a2b×b2c× c2a = 3abc

and
ab2 +bc2 + ca2 ≥ 3 3

√
ab2×bc2× ca2 = 3abc

Thus, we have x≥ z and y≥ z and so (x− z)(y− z)≥ 0 completing the proof. Equality holds
if and only if a = b = c.

Problem 1.2.10. (2002 Romania Junior TST) If a,b,c ∈ (0,1), then prove that
√

abc+
√

(1−a)(1−b)(1− c)< 1
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Solution. Since
√

x < 3
√

x when x ∈ (0,1), we have

√
abc < 3√abc≤ a+b+ c

3

by the AM-GM inequality. Similarly, one can get√
(1−a)(1−b)(1− c)< 3

√
(1−a)(1−b)(1− c)≤ (1−a)+(1−b)+(1− c)

3

Thus, we have
√

abc+
√

(1−a)(1−b)(1− c)< 3√abc+ 3
√

(1−a)(1−b)(1− c)≤ 1

completing the proof.

Problem 1.2.11. Prove that the inequality√
a2 +(1−b)2 +

√
b2 +(1− c)2 +

√
c2 +(1−a)2 ≥ 3

√
2

2

holds for arbitary reals a,b,c.

Solution. We first prove that for reals x and y, we have√
x2 + y2

2
≥ |x|+ |y|

2

the above inequality rewrites as |x|2−2|x||y|+ |y|2 ≥ 0 which is obviously true. Equality holds
if and only if |x|= |y|. Now, applying this result to the original inequality, we have√

a2 +(1−b)2 ≥ |a|+ |1−b|√
2√

b2 +(1− c)2 ≥ |b|+ |1− c|√
2√

c2 +(1−a)2 ≥ |c|+ |1−a|√
2

Also, note that |x|+ |1−x| ≥ 1. Therefore, if we add the above three inequalities, we get the
desired result. Equality holds if and only if a = b = c = 1

2
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Problem 1.2.12. Let a,b,c be positive reals. Prove that,

6ab−b2

8a2 +b2 <

√
a
b

Solution. Let u =
√

a and v =
√

b. Then, the original inequality rewrites as

v(6u2v2− v4)< u(8u4 + v4)

or
6u2v3 < 8u5 +uv4 + v5

which is obviously true by the AM-GM Inequality. Note that if equality were to hold, then
8u5 = uv4 = v5, giving u = v and 8u = v which is impossible.

Problem 1.2.13. (2015 Iran TST) Let a,b,c,d be positive real numbers such that ∑
cyc

1
ab

= 1.

Prove that

abcd +16≥ 8

√
(a+ c)(

1
a
+

1
c
)+8

√
(b+d)(

1
b
+

1
d
)

Solution. We have,

abcd+16=∑
cyc

ab+16∑
cyc

1
ab

=∑
cyc

(
ab+

16
bc

)
≥ 8∑

cyc

√
a
c
= 8∑

cyc

√
a
c
+2+

c
a
= 8∑

cyc

√
(a+ c)(

1
a
+

1
c
)

where the last inequality follows from the AM-GM Inequality.

Problem 1.2.14. (2021 Hong Kong TST) Find all real triples (a,b,c) satisfying

(22a +1)(22b +2)(22c +8) = 2a+b+c+5.

Solution. Let x = 2a, y = 2b, z = 2c be positive reals. Then the given rewrites as

(x2 +1)(y2 +2)(z2 +8) = 32xyz.

However observe that
x2 +1≥ 2x

y2 +2≥ 2y
√

2

z2 +8≥ 4z
√

2
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by the AM-GM Inequality. Multiplying gives

(x2 +1)(y2 +2)(z2 +8)≥ 32xyz,

with equality if and only if (x,y,z) = (1,
√

2,2
√

2).
Thus, the only solution is (a,b,c) = (0, 1

2 ,
3
2).

beginproblem(APMO 1998) Let x, y, z be positive real numbers. Prove that

Problem 1.2.15. (
1+

x
y

)(
1+

y
z

)(
1+

z
x

)
≥ 2
(

1+
x+ y+ z

3
√

xyz

)
.

Solution. We begin by observing that,

∏

(
1+

x
y

)
= ∑

cyc

(
x
y
+

y
x

)
+2

By AM-GM,
x
x
+

x
y
+

x
z
≥ 3x

3
√

xyz

When we add these cyclic relations, we obtain

3+∑cyc

(
x
y +

y
x

)
3

≥ x+ y+ z
3
√

xyz

4+∏

(
1+ x

y

)
3

≥ 1+
x+ y+ z

3
√

xyz

Let

∏

(
1+

x
y

)
= a

It suffices to prove that,
a
2
≥ 4+a

3
or

a≥ 8

which is obviously true!
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Problem 1.2.16 (sqing). Let a,b ∈ (0,1) and 4(a+b) = 4ab+3. Prove that

a+2b≤ 3−
√

2.

Solution. By the AM-GM Inequality,

a =
3−4b
4−4b

= 1− 1
4(1−b)

a+2b = 3− 1
4(1−b)

−2(1−b)≤ 3−
√

2

Equality holds if and only if (1−a) = 2(1−b), i.e. 1−
√

2
2 and b = 1−

√
2

4

Problem 1.2.17. Let a,b,c be positive real numbers. Prove that

a3 +b3 + c3 ≥ 2abc
(

a2

b2 + c2 +
b2

c2 +a2 +
c2

a2 +b2

)
≥ 3abc

Solution. Clearly, we have

a2

bc
−2

a2

(b2 + c2)
=

a2

bc(b2 + c2)
(b− c)2 ≥ 0

Thus, we have

∑
cyc

a2

bc
≥ 2∑

cyc

a2

b2 + c2

or

a3 +b2 + c3 ≥ 2abc(
a2

b2 + c2 +
b2

c2 +a2 +
c2

a2 +b2 )

proving the first part of the inequality. As for the second part, it suffices to prove that

a2

b2 + c2 +
b2

c2 +a2 +
c2

a2 +b2 ≥
3
2

By the AM-HM Inequality, we have[
(a2 +b2)+(b2 + c2)+(c2 +a2)

][ 1
a2 +b2 +

1
b2 + c2 +

1
c2 +a2

]
≥ 9

or
a2

b2 + c2 +
b2

c2 +a2 +
c2

a2 +b2 ≥
3
2

proving the second part also. Equality holds if and only if a = b = c.
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Problem 1.2.18. Prove that for all real positive numbers a,b,c,
1

a+ab
+

1
b+bc

+
1

c+ ca
≥ 3

1+abc

Solution. We can rewrite the inequality as,

∑
cyc

1+abc
a+ab

≥ 3

Adding 1 on each term of the inequality, we get

∑
cyc

1+a+ab+abc
a+ab

≥ 6

or

∑
cyc

a+1
b(b+1)

+∑
cyc

b(c+1)
(b+1)

≥ 6

which is obviously true by the AM-GM Inequality.

Problem 1.2.19 (sqing). Let a,b,c > 0 and ab+bc+ ca = 3. Prove that

a

√
4b2 +

5
b
+b

√
4c2 +

5
c
+ c

√
4a2 +

5
a
≥ 9

Solution. By the AM-GM Inequality, (a+b+c)2≥ 3(ab+bc+ca) = 9 and so a+b+c≥ 3.
Now, notice that, √

4b2 +
5
b
≥ (

b+5
2

)2

⇐⇒ 3b3−2b2−5b+4≥ 0

⇐⇒ (b−1)2(3b+4)≥ 0

which is obviously true. Thus,

a

√
4b2 +

5
b
+b

√
4c2 +

5
c
+ c

√
4a2 +

5
a
≥ 1

2
(ab+bc+ ca+5(a+b+ c))≥ 1

2
(3+5×3) = 9

completing the proof. Equality holds if and only if a = b = c = 1.

Problem 1.2.20 (sqing). Let a,b,c > 0 and ab+bc+ ca = 3. Prove that

a
√

b2−b+1+b
√

c2− c+1+ c
√

a2−a+1≥ 3
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Solution. By the AM-GM Inequality, (a+b+c)2≥ 3(ab+bc+ca) = 9 giving a+b+c≥ 3.
Again, by the AM-GM Inequality,

a2−a+1≥ a2− a2 +1
2

+1 =
a2 +1

2
≥ (a+1)2

4

Thus, we have

∑
cyc

a
√

b2−b+1≥ 1
2
(ab+bc+ ca+a+b+ c)≥ 3

completing the proof. Equality holds if and only if a = b = c = 1.

Problem 1.2.21. (Mathlinks) Let a,b,c be nonnegative real numbers such that a+b+ c = 2.
Prove that

3abc+
√

4+a2b2c2 ≥ (a+b)(b+ c)(c+a)

Solution. Without Loss of Generality, we may assume that c = min{a,b,c}, which means
that 2−3c≥ 0. Since

(a+b)(b+ c)(c+a)≥ 8abc≥ 3abc

using the fact that (a+b)(b+ c)(c+a) = (a+b+ c)(ab+bc+ ca)−abc and squaring the
inequality, we obtain √

4+a2b2c2 ≥ 2(ab+bc+ ca)−4abc

or
4+a2b2c2 ≥ 4(ab+bc+ ca)2−16abc(ab+bc+ ca)+16a2b2c2

or
[2(ab+bc+ ca)−5abc][2(ab+bc+ ca)−3abc]≤ 4

But
LHS≤ [2(ab+bc+ ca)−3abc]2

and so it is enough to prove that

2(ab+bc+ ca)−3abc≤ 2

or
ab(2−3c)+2c(2− c)≤ 2

By the AM-GM Inequality, we have

√
ab≤ a+b

2
≤ a+b+ c

2
= 1
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hence
ab(2−3c)≤

√
ab(2−3c)≤ 2− c

2
(2−3c)

Therefore, it suffices to prove that

2− c
2

(2−3c)+2c(2− c)≤ 2 ⇐⇒ (2− c)(2+ c)≤ 4

which is obviously true. Equality holds if and only if (a,b,c) = (1,1,0) and it’s permutations.

1.2.4 Cauchy-Schwartz Inequality

Theorem 1.2.2 (CS Inequality) — For any two real sequences {ai}n
i=1 and {bi}n

i=1 we have

(
n

∑
i=1

a2
i

)(
n

∑
i=1

b2
i

)
≥

(
n

∑
i=1

aibi

)2

This inequality is just a direct result from the well known Lagrange Identity, which states that for
reals a1,a2, ...,an and b1,b2, ...,bn, we have(

n

∑
k=1

akbk

)2

=

(
n

∑
k=1

ak

)2( n

∑
k=1

bk

)2

− ∑
1≤k< j≤1

(
akb j−a jbk

)2

since (
∑
cyc

akbk

)2

=

(
n

∑
k=1

ak

)2( n

∑
k=1

bk

)2

− ∑
1≤k< j≤1

(
akb j−a jbk

)2 ≤

(
∑
k=1

akbk

)2

the conclusion follows. The Cauchy-Schwartz Inequality is more applicable when you are given an
inequality problem, whose variables are in the domain of reals, because the AM-GM Inequality is
only applicable for positive reals, whereas the Cauchy-Schwartz Inequality need not be restricted in
the domain of positive reals. Now that we are clear with the Cauchy-Schwartz Inequality, we now
introduce to the reader, "Titu’s Lemma" which is a corollary of the Cauchy-Schwartz Inequality.

Theorem 1.2.3 (Titu’s Lemma) — For any two real sequences {ai}n
i=1 and {bi}n

i=1 we have

n

∑
i=1

a2
i

bi
≥ (∑n

i=1 ai)
2

∑
n
i=1 bi
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The proof of this lemma is left as an easy exercise to the reader. Now that we are clear with the
statements, we now move forward to encounter diverse problems involving the Cauchy-Schwartz
Inequality.

Problem 1.2.22 (2020 Azerbaijan Math Olympiad). Let a,b,c be positive real numbers
such that a+b+ c = 3. Prove that

∑
cyc

a2 +6
2a2 +2b2 +2c2 +2a−1

≤ 3

Solution. By the Cauchy-Schwartz Inequality, we have

2(b2 + c2)≥ (b+ c)2 = (3−a)2 = a2−6a+9

Thus,
2a2 +2b2 +2c2 +2a−1≥ 3a2−4a+8

Now, the inequality

1≥ a2 +6
2a2 +2b2 +2c2 +2a−1

is equivalent to each of the following inequalities,

1≥ a2 +6
3a2−4a+8

3a2−4a+8≥ a2 +6

2(a−1)2 ≥ 0

which is obviously true. Similarly, we have

1≥ b2 +6
2a2 +2b2 +2c2 +2b−1

and

1≥ c2 +6
2a2 +2b2 +2c2 +2c−1

Adding the three inequalities, we get the desired result. Equality holds if and only if a = b =
c = 1.

Problem 1.2.23 (Rama1728). Let a,b,c be real numbers such that abc = 1. Prove that

a3

a3 +2
+

b3

b3 +2
+

c3

c3 +2
≥ 1
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Solution. Since abc = 1, we can write bc = 1
a , ca = 1

b and ab = 1
c . By Titu’s Lemma,

∑
cyc

a3

a3 +2
= ∑

cyc

a2

a2 + 2
a

= ∑
cyc

a2

a2 +2bc
≥ (a+b+ c)2

a2 +b2 + c2 +2(ab+bc+ ca)
= 1

completing the proof. Equality holds if and only if a = b = c = 1.

Problem 1.2.24. Let a,b,c,d be positive real numbers such that a+b+ c+d = 1. Prove that

∑
cyc

abc
1+bc

≤ 1
17

Solution. We can rewrite the inequality as

∑
cyc

a
1+bc

≥ 16
17

Now, by Titu’s Lemma,

∑
cyc

a
1+bc

= ∑
cyc

a2

a+abc
≥ 1

1+∑cyc abc

Thus, it suffices to prove that

∑
cyc

abc≤ 1
16

or
ab(c+d)+ cd(a+b)≤ 1

16
or

(a+b)2

4
(c+d)+

(c+d)2

4
(a+b)≤ 1

16
or [

(a+b)(c+d)
4

]
≤ 1

16

which is obviously true by the AM-GM Inequality as,

(a+b)(c+d)≤ (a+b+ c+d)2

4
=

1
4

completing the proof. Equality holds if and only if a = b = c = d = 1
4 .
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Problem 1.2.25 (2020 Moldova TST). Let a,b,c be positive reals. Prove that

∑
cyc

a√
7a2 +b2 + c2

≤ 1

Solution. Multiply the inequality by 3. By the AM-GM Inequality, we have

∑
cyc

√
9a2

7a2 +b2 + c2 .1≤∑

9a2

7a2+b2+c2 +1

2
≤ 3 ⇐⇒ ∑

3a2

7a2 +b2 + c2 ≤ 1

by subtracting the inequality by 1
2 , and multiplying by −1, we get

∑
a2 +b2 + c2

7a2 +b2 + c2 ≥ 1

which is obviously true by Titu’s Lemma. Equality holds if and only if a = b = c

Problem 1.2.26 (Vasile Cîrtoaje, 2011 ). If a,b,c are real numbers, then

32
(
a2 +bc

)(
b2 + ca

)(
c2 +ab

)
+9(a−b)2(b− c)2(c−a)2 ≥ 0

Solution [ Vo Quoc Ba Can]. For a,b,c≥ 0, the inequality is trivial. Otherwise, since the
inequality is symmetric and does not change by substituting −a,−b,−c for a,b,c, we may
assume that a≤ 0 and b,c≥ 0. Substituting −a for a, we need to prove that

32
(
a2 +bc

)(
b2−ac

)(
c2−ab

)
+9(a+b)2(a+ c)2(b− c)2 ≥ 0

for all a,b,c≥ 0. By the AM-GM inequality, we have

(a+b)2(a+ c)2 =
[
a(b+ c)+

(
a2 +bc

)]2 ≥ 4a(b+ c)
(
a2 +bc

)
Thus, it suffices to prove that

8
(
b2−ac

)(
c2−ab

)
+9a(b+ c)(b− c)2 ≥ 0

Since (
b2−ac

)(
c2−ab

)
= bc

(
bc+a2)−a

(
b3 + c3)

≥ 2abc
√

bc−a
(
b3 + c3)=−a(b

√
b− c
√

c)2,

it is enough to show that

9(b+ c)(b− c)2−8(b
√

b− c
√

c)2 ≥ 0
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Setting
√

b = x and
√

c = y, the inequality can be rewritten as

(x− y)2
[
9
(
x2 + y2)(x+ y)2−8

(
x2 + xy+ y2)2

]
≥ 0

This follows from the Cauchy-Schwarz inequality as follows

9
(
x2 + y2)(x+ y)2 = 9

[
(x− y)2 +2xy

][
(x− y)2 +4xy

]
≥ 9

[
(x− y)2 +2

√
2xy
]2
≥ 9

[
2
√

2
3 (x− y)2 +2

√
2xy
]2

= 8
(
x2 + xy+ y2)2 ≥ 0

The equality occurs when two of a,b,c are zero, and when −a = b = c (or any cyclic permu-
tation).

Problem 1.2.27 (Vasile Cîrtoaje). If a,b, c are real numbers, then

a2 (b2− c2)2
+b2 (c2−a2)2

+ c2 (a2−b2)2 ≥ 3
8
(a−b)2(b− c)2(c−a)2

Solution. We see that the inequality remains unchanged and the product

(a+b)(b+ c)(c+a)

changes its sign by replacing a,b,c with −a,−b,−c, respectively. Thus, without loss of
generality, we may assume that (a+ b)(b+ c)(c+ a) ≥ 0. According to this condition, at
least one of a,b,c is non negative. So, we may consider a≥ 0, and hence

a(a+b)(b+ c)(c+a)≥ 0

In virtue of the Cauchy-Schwarz inequality, we get

b2 (c2−a2)2
+ c2 (a2−b2)2 ≥ 1

2
[
b
(
c2−a2)+ c

(
a2−b2)]2 = 1

2
(b− c)2 (a2 +bc

)2

Thus, it suffices to show the equivalent inequality,

(a+b)(a+ c)
[
a2 +5a(b+ c)+bc

]
≥ 0

(a+b)(a+ c)[(a+b)(a+ c)+4a(b+ c)]≥ 0
(a+b)2(a+ c)2 +4a(a+b)(b+ c)(c+a)≥ 0

Since the last inequality is clearly true, the proof is completed. The equality holds for a = b =
c, for −a = b = c (or any cyclic permutation), and for b = c = 0 (or any cyclic permutation).
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Problem 1.2.28 (sqing). Let a,b,c > 0 and a+b+ c = 3. Prove that

a
2a+bc

+
b

2b+ ca
+

c
2c+ab

≤ 1.

Solution. The inequality rewrites as,

∑
cyc

bc
2a+bc

≥ 1

By Titu’s Lemma,

∑
cyc

bc
2a+bc

= ∑
cyc

b2c2

2abc+b2c2 ≥
(ab+bc+ ca)2

6abc+a2b2 +b2c2 + c2a2 = 1

completing the proof. Equality holds if and only if a = b = c = 1.

Problem 1.2.29 (justin 1228). Let a,b,c,d be positive real numbers. Prove that

a
b+ c

+
b

c+d
+

c
d +a

+
d

a+b
≥ 2

Solution. By Titu’s Lemma, we have

∑
cyc

a
b+ c

= ∑
cyc

a2

ab+ac
≥ (a+b+ c+d)2

ab+bc+ cd +da+2ac+2bd

Thus, it suffices to prove that

(a+b+ c+d)2 ≥ 2ab+2bc+2cd +2da+4ac+4bd

or
(a− c)2 +(b−d)2 ≥ 0

which is obviously true by the trivial inequality. Equality holds if and only if a = b = c = d.

Problem 1.2.30 (IMO 1995). Let a,b,c be positive reals such that abc = 1. Prove that

1
a3(b+ c)

+
1

b3(c+a)
+

1
c3(a+b)

≥ 3
2
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Solution. By the Cauchy-Schwarz Inequality, we have(
1

a3(b+ c)
+

1
b3(c+a)

+
1

c3(a+b)

)
(a(b+ c)+b(c+a)+ c(a+b))≥

(
1
a
+

1
b
+

1
c

)2

since 1
a +

1
b +

1
c = ab+bc+ ca, we have

1
a3(b+ c)

+
1

b3(c+a)
+

1
c3(a+b)

≥ ab+bc+ ca
2

≥ 3 3√a2b2c2

2
=

3
2

as desired. Equality holds if and only if a = b = c = 1.

Another solution with Titu’s Inequality,
Solution. After the setting a = 1

x ,b = 1
y ,c =

1
z , and as abc = 1 ⇐⇒ 1

abc = 1 =⇒ xyz = 1.

Claim :
x2

y+ z
+

y2

z+ x
+

z2

x+ y
≥ 3

2

By Titu Lemma,

=⇒ x2

y+ z
+

y2

z+ x
+

z2

x+ y
≥ (x+ y+ z)2

2(x+ y+ z)

=⇒ x2

y+ z
+

y2

z+ x
+

z2

x+ y
≥ (x+ y+ z)

2

Now by AM-GM we know that
(x+ y+ z)≥ 3 3

√
xyz

and xyz = 1 which concludes to =⇒ (x+ y+ z)≥ 3 3
√

1
Therefore we get

=⇒ x2

y+ z
+

y2

z+ x
+

z2

x+ y
≥ 3

2

Hence our claim is proved and this proves the original inequality.

Problem 1.2.31 (Vasile Cîrtoaje). Let x,y,z be positive real numbers. Prove that

x
y+ z

+
y

z+ x
+

z
x+ y

≥ 3
2
+

27
16

.
(y− z)2

(x+ y+ z)2
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Solution. First suppose that 2x≤ y+ z. Adding the equality

y+ z
x+ z

+
x+ z
y+ z

−2 =
(y− z)2

(x+ z)(y+ z)

and it’s symmetric analogs, we see that the inequality can be rewritten as

∑
cyc

(x− y)2

(x+ z)(y+ z)
≥ 27

8
.

(y− z)2

(x+ y+ z)2

But by Titu’s Lemma, we have

(x− y)2

(x+ z)(y+ z)
+

(x− z)2

(x+ y)(y+ z)
≥ (y− x+ x− z)2

(x+ z)(y+ z)+(y+ z)(x+ y)
=

(y− z)2

(y+ z)(2x+ y+ z)

Therefore, it suffices to prove that if 2x≤ y+ z, then

1
2x+ y+ z

+
1

(x+ y)(x+ z)
≥ 27

8(x+ y+ z)2

With the substitutions a = x+ y,b = y+ z,c = z+ x, we must prove that if 2c≥ a+b, then

2(a+b+ c)2(ab+bc+ ca)≥ 27abc(a+b)

or (
2+

2c
a+b

)2(
1+

c
a
+

c
b

)
≥ 27.

2c
a+b

By the Cauchy-Schwarz Inequality, we have

c
a
+

c
b
≥ 4c

a+b

Letting t = 2c
a+b ≥ 1, it remains to show that

(t +2)2(1+2t)≥ 27t

which is obviously true from the AM-GM Inequality, i.e.

(t +2)2 ≥ 9
3√

t2

and
1+2t ≥ 3 3

√
t

Now suppose that 2x≥ y+z. With the same notations as above, a= x+y,b= y+z,c= z+x,
we have t = 2c

a+b ≤ 1 and the inequality of statement can be rewritten as

a+b
2c

+
(a+b+ c)(a+b)

2ab
≥ 4+

27
4
.

(a−b)2

(a+b+ c)2
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or
a+b

2c
+

(a+b+ c)(a+b)
2ab

+
27ab

(a+b+ c)2 ≥ 4+
27
4
.

(a−b)2

(a+b+ c)2

But from the AM-GM Inequality, we have

(a+b+ c)(a+b)
2ab

+
27ab

(a+b+ c)
≥ 6

√
3(a+b)

2(a+b+ c)

Therefore, it suffices to show that

a+b
2c

+6

√
3(a+b)

2(a+b+ c)
≥ 4+

27
4
.

(a+b)2

(a+b+ c)2

or
1
t
+6

√
3

2+ t
≥ 4+

27
(2+ t)2

Letting 3
2 ≥ u2 = 3

2+t ≥ 1, this inequality becomes

u2

3−2u2 +6u≥ 4+3u4 ⇐⇒ (u−1)2[6(u3−1)(u+2)+9u2]≥ 0

which is obviously true.

Problem 1.2.32. Let a1,a2, ...,an be positive numbers such that a1a2...an = 1. Prove

1
1+(n−1)a1

+
1

1+(n−1)a2
+ ·+ 1

1+(n−1)an
≥ 1

Solution. Using the substitution ai =
1
xi
for all i, the inequality becomes

x1

x1 +n−1
+

x2

x2 +n−1
+ · · ·+ xn

xn +n−1
≥ 1

where x1,x2, . . . ,xn are positive numbers such that x1x2 . . .xn = 1. By the Cauchy-Schwarz
Inequality, we have

∑
x1

x1 +n−1
≥
(√

x1 +
√

x2 + · · ·+
√

xn
)2

∑(x1 +n−1)

Thus, we still have to show

(
√

x1 +
√

x2 + · · ·+
√

xn)
2 ≥ n(n−1)+∑x1
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which is equivalent to

∑
1≤i< j≤n

√
xix j ≥

n(n−1)
2

Since x1x2 xn = 1, the inequality follows immediately from the AM-GM Inequality

Problem 1.2.33. Let a,b,c > 0 and a+b+ c = 3. Prove that

1
3+a2 +b2 +

1
3+b2 + c2 +

1
3+ c2 +a2 ≤

3
5

Solution. We have:

1
3+a2 +b2 +

1
3+b2 + c2 +

1
3+ c2 +a2 ≤

3
5

⇐⇒ 3
3+a2 +b2 +

3
3+b2 + c2 +

3
3+ c2 +a2 ≤

9
5

∑
a2 +b2

3+a2 +b2 ≥
6
5

Using Cauchy-Schwarz’s inequality;(
∑

a2 +b2

3+a2 +b2

)(
∑3+a2 +b2)≥ (∑√

a2 +b2
)2

That means We have to prove

(
∑
√

a2 +b2
)2
≥ 6

5
(
∑
(
3+a2 +b2))

∑
(
a2 +b2)+2∑

√
(a2 +b2)(a2 + c2)≥ 54

5
+

12
5 ∑a2

8∑a2 +10∑ab≥ 54 ⇐⇒ 5(a+b+ c)2 +3∑a2 ≥ 54

it is true with a+b+ c = 3

Problem 1.2.34 (Mathlinks). Let a,b,c,d be positive real numbers such that

a+b+ c+d = 4



Theory and Examples Cauchy-Schwartz Inequality 25

Prove that

27
(

1
a
+

1
b
+

1
c
+

1
d

)
≥ 9

(
a3 +b3 + c3 +d3)+8

Solution. Assume WLOG that a≥ b≥ c≥ d. Note that the equality holds when a = 3,b =
3,c = 3,d = 1

3 . The inequality can be written sucessively in the following forms:

∑
b,c,d

9
[

3
b
−b3−9+

1
27

+

(
27+

1
3

)
b− 1

3

(
27+

1
3

)]

≥ 9
[

3
a
−a3−9+

1
27

+

(
27+

1
3

)
a− 1

3

(
27+

1
3

)]
or

∑
b,c,d

(3b−1)2(−3b2−2b+81)
3b

≥ 3(a−3)2(3a2 +18a−1)
a

But −3x2−2x+8a≥−3a2−a+81 for x ∈ b,c,d, therefore it suffices to prove that

(−3a2−2a+81) ∑
b,c,d

(3b−1)2

3b
≥ 3(a−3)2(3a2 +18a−1)

a

By the Cauchy-Schwarz Inequality, we have

∑
b,c,d

(3b−1)2

3b
≥ [3(b+ c+d)−3]2

3(b+ c+d)
=

3(3−a)2

(4−a)

So, it remains to show that

3(3−a)2(−3a2−2a−81)
4−a

≥ 3(a−3)2(3a2 +18a−1)
a

or
12(a−3)2(a+1)2

a(4−a)
≥ 0

which is obviously true.
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1.2.5 Holders Inequality

Theorem 1.2.4 (Holder’s Inequality) — Let {ai}n
i=1 and {bi}n

i=1 be two sequences of positive
real numbers, and let p,q be two positive real numbers such that 1

p +
1
q = 1. Then, we have

n

∑
k=1

akbk ≤

(
n

∑
k=1

ap
k

) 1
p
(

n

∑
k=1

bq
k

) 1
q

Equality holds if and only if
ap

1
bq

1
=

ap
2

bq
2
= · · ·= ap

n

bq
n

Remark: If p = q = 2 this becomes Cauchy’s inequality. We now give a generalization of Holder’s
Inequality.

Theorem 1.2.5 (Generalized Holder’s Inequality) — Let ai j1≤i< j≤n be a sequence of positive
real numbers, and p1, p2, ..., pn be positive real numbers such that p1+ p2+ ...+ pn = 1. Then,

m

∑
i=1

(
n

∏
j=1

ap j
i j

)
≤

n

∏
j=1

(
m

∑
i=1

ai j

)p j

Remark. The Holder’s Inequality is a generalization of the Cauchy-Schwartz Inequality. It is
really helpful in proving inequalities which are cyclic and involve product of two cyclic terms.

Now that the statement is clear, we can move on to some problems.

Problem 1.2.35. Let x,y,z > 0 be real numbers. Prove that

(x2 + xy+ y2)(y2 + yz+ z2)(z2 + zx+ x2)≥ (xy+ yz+ zx)3

Solution. Using the Generalized Holder’s Inequality, we have

(x2 + xy+ y2)(y2 + yz+ z2)(z2 + zx+ x2)

= (xy+ x2 + y2)(y2 + z2 + yz)(x2 + xz+ z2)

≥ ( 3
√

x2.y2.xy+ 3
√

y2.z2.yz+ 3
√

x2.z2.xz)3

= (xy+ yz+ zx)3
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Problem 1.2.36 (Pham Kim Hung). Let a,b,c be positive real numbers. Prove that

a2(b+ c)+b2(c+a)+ c2(a+b)≥ (ab+bc+ ca) 3
√
(a+b)(b+ c)(c+a)

Solution. Notice that the following expressions are equal to each other

a2(b+ c)+b2(c+a)+ c2(a+b)
b2(c+a)+ c2(a+b)+a2(b+ c)
ab(a+b)+bc(b+ c)+ ca(c+a)

According to Hölder inequality, we get that(
∑
cyc

a2(b+ c)

)3

≥

(
∑
cyc

ab 3
√

(a+b)(b+ c)(c+a)

)3

which is exactly the desired result. Equality holds for a = b = c

Problem 1.2.37 (Pham kim Hung). Let a,b,c be positive real numbers such that abc = 1.
Prove that

a√
7+b+ c

+
b√

7+ c+a
+

c√
7+a+b

≥ 1

a√
7+b2 + c2

+
b√

7+ c2 +a2
+

c√
7+a2 +b2

≥ 1

With the same condition, determine if the following inequality is true or false.

a√
7+b3 + c3

+
b√

7+ c3 +a3
+

c√
7+a3 +b3

≥ 1

Solution. For the first one, apply Hölder inequality in the following form(
∑
cyc

a√
7+b+ c

)(
∑
cyc

a√
7+b+ c

)(
∑
cyc

a(7+b+ c)

)
≥ (a+b+ c)3

It’s enough to prove that

(a+b+ c)3 ≥ 7(a+b+ c)+2(ab+bc+ ca)

Because a+b+ c≥ 3 3
√

abc = 3

(a+b+ c)3 ≥ 7(a+b+ c)+
2
3
(a+b+ c)2 ≥ 7(a+b+ c)+2(ab+bc+ ca)
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For the second one, apply Hölder inequality in the following form(
∑
cyc

a√
7+b2 + c2

)(
∑
cyc

a√
7+b2 + c2

)(
∑
cyc

a
(
7+b2 + c2))≥ (a+b+ c)3

On the other hand

∑
cyc

a
(
7+b2 + c2)=7(a+b+ c)+(a+b+ c)(ab+bc+ ca)−3abc

≤ 7(a+b+ c)+
1
3
(a+b+ c)3−3≤ (a+b+ c)3

Equality holds for a = b = c = 1 for both parts. The third one is not true. Indeed, we only
need to choose a→ 0 and b = c→+∞, or namely, a = 10−4,b = c = 100.

Problem 1.2.38 (Titu Andreescu, 2006). If a,b,c are real numbers, then

3
(
a2−ab+b2)(b2−bc+ c2)(c2− ca+a2)≥ a3b3 +b3c3 + c3a3

Solution. Substituting a,b,c by |a|, |b|, |c|, respectively, the left side of the inequality
remains unchanged or decreases, while the right side remains unchanged or increases. There-
fore, it suffices to prove the inequality for a,b,c≥ 0. If a = 0, then the inequality reduces to
b2c2(b− c)2 ≥ 0. Consider further then a,b,c > 0. We first show that

3
(
a2−ab+b2)3 ≥ a6 +a3b3 +b6

Indeed, setting x =
a
b
+

b
a
,x≥ 2, we can write this inequality as

3(x−1)3 ≥ x3−3x+1
⇐⇒ (x−2)2(2x−1)≥ 0

Using this inequality, together with the similar ones, we have

27
(
a2−ab+b2)3 (

b2−bc+ c2)3 (
c2− ca+a2)3

≥
(

a6 +a3b3 +b6
)(

b6 +b3c3 + c6
)(

c6 + c3a3 +a6
)

Therefore, it suffices to show that(
a6 +a3b3 +b6

)(
b6 +b3c3 + c6

)(
c6 + c3a3 +a6

)
≥
(
a3b3 +b3c3 + c3a3)3

Writing this inequality in the form(
a3b3 +b6 +a6

)(
b6 +b3c3 + c6

)(
a6 + c6 + c3a3

)
≥
(
a3b3 +b3c3 + c3a3)3
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we see that it is just Hölder’s Inequality. The equality holds when a = b = c, when a = 0 and
b = c (or any cyclic permutation), and when two of a,b,c are 0 .

Problem 1.2.39 (Titu Andreescu). Let a,b,c be positive real numbers such that ab+bc+
ca = 3. Prove that

(2+3a3)(2+3b3)(2+3c3)≥ 125

Solution. First, by Holder’s Inequality,

(a3 +1)(1+b3)(1+1)≥ (a+b)3

(b3 +1)(1+ c3)(1+1)≥ (b+ c)3

(c3 +1)(1+a3)(1+1)≥ (c+a)3

Multiplying the inequalities, we get

(a3 +1)(b3 +1)(c3 +1)≥

√[
(a+b)(b+ c)(c+a)

2

]3

But, by the AM-GM Inequality and the well known inequality (a+b+c)2 ≥ 3(ab+bc+ca),
we get

(a+b)(b+ c)(c+a) = (a+b+ c)(ab+bc+ ca)−abc

≥ (a+b+c)(ab+bc+ca)− (a+b+ c)(ab+bc+ ca)
9

=
8(a+b+ c)

3
≥

8
√

3(ab+bc+ ca)
3

= 8

Therefore
(a3 +1)(b3 +1)(c3 +1)≥ 8

Returning to the initial problem, applying Holder’s Inequality again, we have[
(1+a3)+a3 +a3 +1

][
(1+b3)+b3 +b3 +1

][
(1+ c3)+ c3 + c3 +1

]
≥
[

3
√
(1+a3)(1+b3)(1+ c3)+ab+bc+ ca

]3

≥ (2+3)3 = 125

Equality holds if and only if a = b = c = 1.

Problem 1.2.40. Suppose that a,b,c are positive real numbers satisfying the condition 3max
(
a2,b2,c2)≤
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2
(
a2 +b2 + c2) . Prove that

a√
2b2 +2c2−a2

+
b√

2c2 +2a2−b2
+

c√
2a2 +2b2− c2

≥
√

3

Solution. By Holder, we deduce that(
∑
cyc

a√
2b2 +2c2−a2

)(
∑
cyc

a√
2b2 +2c2−a2

)(
∑
cyc

a
(
2b2 +2c2−a2))≥ (a+b+ c)3

It remains to prove that

(a+b+ c)3 ≥ 3∑
cyc

a
(
2b2 +2c2−a2)

Rewrite this one in the following form

3

(
abc−∏

cyc
(a−b+ c)

)
+2

(
∑
cyc

a3−3abc

)
≥ 0

which is obvious (for a quick proof that the first term is bigger than 0, replace a−b+c = x.
etc). Equality holds for a = b = c

Problem 1.2.41 (IMO SL 2018). Find the maximal value of

S = 3

√
a

b+7
+ 3

√
b

c+7
+ 3

√
c

d +7
+ 3

√
d

a+7
,

where a, b, c, d are nonnegative real numbers which satisfy a+b+ c+d = 100.

Solution [Evan Chen]. The answer is 8
3√7

achieved when (a,b,c,d) = (49,1,49,1). Let S be

desired maximum. Set a = w2, b = x2, c = y2, d = z2 and moreover define t = w+ x+ y+ z.
First, by Hölder inequality we have

S3 ≤

(
∑
cyc

w

)(
∑
cyc

w

)(
∑
cyc

1
x2 +7

)
.
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Also, we use will use the key estimate

0≤ (x−1)2(x−7)2

x2 +7

= x2−16x+71− 448
x2 +7

=⇒ 1
x2 +7

≤ x2−16x+71
448

=⇒ ∑
cyc

1
x2 +7

≤∑
cyc

x2−16x+71
448

=
6
7
− t

28

Consequently, the earlier estimate gives

S3 ≤ t2(24− t)
28

=
t · t · (48−2t)

56
≤ 163

56
=

512
7

as desired, with the last inequality by AM-GM

1.2.6 Aczel’s Inequality

Theorem 1.2.6 (Aczel’s Inequality) — For all real numbers a1,a2, ...,an and b1,b2, ...,bn such
that a2

1 > a2
2 +a2

3 + ...+a2
n and b2

1 > b2
2 +b2

3 + ...+b2
n, we have

(a1b1−a2b2− ...−anbn)
2 ≥ (a2

1−a2
2− ...−a2

n)(b
2
1−b2

2...−b2
n)

Equality holds if and only if bi = tai for some real t or ai = bi = 0 for i = 1,2,3, ...,n.

Remark. Acel’s Inequality is similar to the Cauchy Schwarz Inequality, and both their proofs are
similar by the use of discriminant. We invite the courageous reader to prove Aczel’s Inequality.

Problem 1.2.42 (Titu Andreescu). In a triangle ABC, \C > 90◦ and

3a+
√

15ab+5b = 7c

where a,b,c are the sides of ABC. Prove that \C ≤ 120◦
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Solution. Since c2−a2−b2 > 0 and 72−32−52 > 0, by Aczel’s Inequality, we have

15ab = (7c−3a−5b)2 ≥ (72−32−52)(c2−a2−b2) = 15(−2abcosC)

giving cosC ≤ −1
2 and thus \C ≤ 120, completing the proof. Equality holds if and only if

a
3 = b

5 = c
7

Problem 1.2.43 (USA TST 2004). Suppose a1,a2, . . . ,an and b1,b2, . . . ,bn are real numbers
such that

(a2
1 +a2

2 + · · ·+a2
n−1)(b2

1 +b2
2 + · · ·+b2

n−1)> (a1b1 +a2b2 + · · ·+anbn−1)2.

Prove that a2
1 +a2

2 + · · ·+a2
n > 1 and b2

1 +b2
2 + · · ·+b2

n > 1.

Solution. Assume the contrary, that 1 > a2
1+a2

2+ ...+a2
n and 1 > b2

1+b2
2+ ...+b2

n. Then,
by Aczel’s Inequality, we have

(1−a1b1−a2b2− ...−anbn)≥ (1−a2
1−a2

2− ...−a2
n)(1−b2

1−b2
2− ...−b2

n)

contrary to the hypothesis.

Problem 1.2.44 (Rama1728). Let ABCD be a quadrilateral with \BAD> 90◦ and \ACD> 90◦.
If AD = a,AB = b,BD = c,AC = 3,CD = 5, prove that

34c2 +a4 +(ab+15)2 ≥ 2ac(3a+5b)+(5a)2 +(3b)2 +(15)2

Solution. The inequality rewrites as

(ca−3a−5b)2 ≥ (c2−a2−b2)(a2−32−52)

which follows from Aczel’s Inequality, as c2 > a2+b2 and a2 > 32+52. The last two inequal-
ities follow from the fact that triangles ABD and ACD are obtuse. Equality holds if and only
if a

c = 3
a = 5

b

Problem 1.2.45 (Shanghai JHSMC 2017). Let x,y be real numbers such that√
1− x2

4
+

√
1− y2

16
=

3
2

Find the maximum value of xy.
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Solution. By Aczel’s Inequality, we have(
1− x2

4

)(
1− y2

16

)
≤
(

1− xy
8

)2

By squaring given condition and applying the above result, we get

9
4
= 1− x2

4
+1− y2

16
+2

√(
1− x2

4

)(
1− y2

16

)

≤ 2− x2

4
− y2

16
+2
(

1− xy
8

)
≤ 2− xy

4
+2− xy

4
= 4− xy

2

Thus, the maximum of xy is 7
2 with equality if and only if y = 2x =

√
7

Problem 1.2.46 (Titu Andreescu). Let a,b,c,d,x,y,z, t be positive real numbers such that
a2 +b2 + c2 +d2 = x2 + y2 + z2 + t2 = 1. Prove that

ax+
√

(b2 + c2)(y2 + z2)+dt ≤ 1

Solution. We have 1− a2− d2 > 0 and 1− x2− t2 > 0. Thus, by Aczel’s Inequality, we
have

(1−ax−dt)2 ≥ (1−a2−d2)(1− x2− t2) = (b2 + c2)(y2 + z2)

By the Cauchy-Schwartz Inequality, we have

ax+dt ≤
√

(a2 +d2)(x2 + t2)< 1

Therefore,
1−ax−dt ≥

√
(b2 + c2)(y2 + z2)

hence the conclusion. Equality holds if and only if a = x,d = t

1.2.7 Rearrangement Inequality
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Theorem 1.2.7 (Rearrangement Inequality) — Let a1≤ a2≤ a3....≤ an and b1≤ b2≤ b3...≤
bn be real numbers. For any permutation c1,c2, ...,cn of b1,b2, ...bn, we have

n

∑
i=1

an−i+1bi ≤
n

∑
i=1

aici ≤
n

∑
i=1

aibi

Problem 1.2.47 (Nesbitt’s Inequality). Let a,b,c be positive real numbers. Prove that

a
b+ c

+
b

c+a
+

c
a+b

≥ 3
2

Solution. Note that a,b,c and 1
b+c =

1
a+b+c−a ,

1
c+a = 1

a+b+c−b ,
1

a+b = 1
a+b+c−c are sorted

in the same order. Then by the rearrangement inequality,

2
(

a
b+ c

+
b

c+a
+

c
a+b

)
≥ b

b+ c
+

c
b+ c

+
c

c+a
+

a
c+a

+
a

a+b
+

b
a+b

= 3

.
For equality to occur, since we changed a · 1

b+c + b · 1
c+a to b · 1

b+c + a · 1
c+a , we must have

a = b, so by symmetry, all the variables must be equal.

Problem 1.2.48. Let a,b,c be nonnegative reals such that a+b+ c = 1. Prove that

a3b+b3c+ c3a+3abc≤ 4
27

Solution. Let {a,b,c}= {x,y,z}, where x≥ y≥ z. Hence, by Rearrangement and AM-GM
we obtain:

a3b+b3c+ c3a+3abc = a2 ·ab+b2 ·bc+ c2 · ca+3abc

≤ x2 · xy+ y2 · xz+ z2 · yz+3xyz = y(x3 + z3 + xz(y+3))

= y((1− y)3−3xz(1− y)+ xz(y+3)) = y((1− y)3 +4yxz)

≤ y((1− y)3 + y(1− y)2) = y(1− y)2 = 4y
(

1− y
2

)2

≤ 4

(
y+ 1−y

2 + 1−y
2

3

)3

=
4

27

Completing the proof.
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Problem 1.2.49. For all x,y,z > 0, prove that

∑
cyc

4x+ y+ z
x+4y+4z

≥ 2

Solution. Due to the symmetry, we may assume that x≥ y≥ z. Notice that

1
x+4y+4z

≥ 1
y+4z+4x

≥ 1
z+4x+4y

.

By Rearrangement inequality, we have

∑
cyc

x
x+4y+4z

≥∑
cyc

y
x+4y+4z

and ∑
cyc

x
x+4y+4z

≥∑
cyc

z
x+4y+4z

.

Now, we consider that

∑
cyc

4x+ y+ z
x+4y+4z

−2 = ∑
cyc

(
4x+ y+ z

x+4y+4z
− 2

3

)
=

5
3 ∑

cyc

2x− y− z
x+4y+4z

=
5
3

(
∑
cyc

x− y
x+4y+4z

+∑
cyc

x− z
x+4y+4z

)
≥ 0.

Problem 1.2.50 (Balkan MO 2010). Let a,b and c be positive real numbers. Prove that

a2b(b− c)
a+b

+
b2c(c−a)

b+ c
+

c2a(a−b)
c+a

≥ 0.

Solution. Substitution x = 1
a ,y =

1
b ,z =

1
c , in the equation this inequality become

∑
x− z
y+ z

≥ 0 ⇐⇒ ∑x
(

1
y+ z

)
≥∑z

(
1

y+ z

)
which is true by Rearrangement Inequality.

Problem 1.2.51 (MMOSL, Aritra12). Prove that the given expression is true where abc =
1 , a,b,c > 0,

∑
cyc

ac(a+ c5)+1
b12 +a(a13c+1)

≤ a6 +b6 + c6
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Solution. We know that
a13 +b13 ≥ a12b+ab12

therefore
ab

a13 +b13 +ab
≤ ab

a12b+ab12 +ab
=

1
a11 +b11 +1

Now note that a11 +b11 ≥ (a+b)(ab)5 so its true that ,

1
a11 +b11 +1

≤ 1
(a+b)(ab)5 +1

Also 1
(a+b)(ab)5+1 can be written as abc = 1

=
1

(a+b)(ab)5 +(abc)5 =⇒ 1
(ab)5 (a+b+ c5)

=⇒ (abc)5

(ab)5 (a+b+ c5)

Now 1
(ab)5(a+b+c5)

is simply c5

a+b+c5 So we can say that,

abc
a13 +b13 +ab

≤ c6

a+b+ c5

a+b+ c5

a13 +b13 +ab
≤ c6

so it results that,

a+b+ c5

a13 +b13 +ab
+

b+ c+a5

b13 + c13 +bc
+

c+a+b5

c13 +a13 + ca
≤ c6 +b6 +a6 = a6 +b6 + c6

∑
cyc

a+b+ c5

a13 +b13 +ab
≤ a6 +b6 + c6

Multiplying the first term of LHS with c

ac+bc+ c6

a13c+b13c+abc
=⇒ ac+bc+ c6

a13c+b13c+1

on multiplying with a again

a2c+abc+ac6

a14c+ab13c+a
=⇒ a2c+1+ac6

a14c+b12 +a
=⇒ ac(a+ c5)+1

b12 +a(a13c+1)
≤ c6

similarly the next two terms will be less than a6 and b6 so its true that ,

∑
cyc

ac(a+ c5)+1
b12 +a(a13c+1)

≤ a6 +b6 + c6
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1.2.8 Chebyshev’s Inequality

Theorem 1.2.8 (Chebyshev’s Inequality) — If a1 ≥ a2 ≥ ...≥ an and b1 ≥ b2 ≥ ...≥ bn then
the following inequality holds:

n

(
n

∑
i=1

aibi

)
≥

(
n

∑
i=1

ai

)(
n

∑
i=1

bi

)

On the other hand, if a1 ≥ a2 ≥ ...≥ an and bn ≥ bn−1 ≥ ...≥ b1 then:

n

(
n

∑
i=1

aibi

)
≤

(
n

∑
i=1

ai

)(
n

∑
i=1

bi

)

Equality holds if and only if a1 = a1 = ...= an or b1 = b2 = ...= bn

Remark. Chebyshev’s Inequality is a consequence of the the Rearrangement inequality. We invite
the courageous reader to prove Chebyshev’s Inequality.

Problem 1.2.52. Prove that if a,b,c > 0 with a+b+ c = 1, then

a3

b2 + c2 +
b3

c2 +a2 +
c3

a2 +b2 ≥
1
2

Solution. WLOG let a ≥ b ≥ c as the inequality is symmetric. Now we have following
ordered sequences arranged having the same order:

a≥ b≥ c and
a2

b2 + c2 ≥
b2

c2 +a2 ≥
c2

a2 +b2 .

Thus by chebyshev inequality, we have,

a3

b2 + c2 +
b3

c2 +a2 +
c3

a2 +b2 ≥
(

a+b+ c
3

)
·
(

a2

b2 + c2 +
b2

c2 +a2 +
c2

a2 +b2

)
.

Now, by Nesbitt inequality, we have,(
a2

b2 + c2 +
b2

c2 +a2 +
c2

a2 +b2

)
≥ 3

2
.

So, (
a+b+ c

3

)
·
(

a2

b2 + c2 +
b2

c2 +a2 +
c2

a2 +b2

)
≥ 1

3
· 3

2
=

1
2

which is the desired result.
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Problem 1.2.53 (Titu Andreescu). Let x1,x2, ...,xn be positive real numbers. Prove that

n
(

1
x1

+
1
x2

+ ...+
1
xn

)
≥
(

1
x1 +1

+
1

x2 +1
+ ...+

1
xn +1

)(
n+

1
x1

+
1
x2

+ ...+
1
xn

)
Solution. Assume WLOG that x1 ≥ x2 ≥ ...≥ xn. Then, we have

1
xi
≤ 1

xi+1
=⇒ 1

xi +1
≤ 1

xi+1 +1
,
xi+1

xi
≤ xi+1 +1

xi +1

for any i ∈ {2,3,4, ...,n−1}. According to Chebyshev’s Inequality, we have(
1

x1 +1
+

1
x2 +1

+ ...+
1

xn +1

)(
x1 +1

x1
+

x2 +1
x2

+ ...+
xn +1

xn

)
≤ n

(
1
x1

+
1
x2

+ ...+
1
xn

)
as desired. Equality holds if and only if x1 = x2 = ...= xn.

Problem 1.2.54 (French JBMO TST 2019). Let a,b,c be positive real numbers such that
a+b+ c = 1. Prove:

5+2b+ c2

1+a
+

5+2c+a2

1+b
+

5+2a+b2

1+ c
≥ 13.

Solution.

5+2b+ c2

1+a
+

5+2c+a2

1+b
+

5+2a+b2

1+ c
= 5∑

cyc

1
1+a

+2∑
cyc

b
1+a

+∑
cyc

c2

1+a

Now by cauchy’s extended inequality and the fact that a+b+c=1

∑
cyc

1
1+a

≥ 9
4

∑
cyc

c2

1+a
≥ 1

1+a

∑
cyc

b
1+a

= ∑
cyc

b2

b+ab
≥ 1

1+∑cyc ab

Also by chebyshev’s inequality ,

∑
cyc

ab≤ (a+b+ c)(b+ c+a)
3

From the above three inequalities, we get the desired inequality.
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Problem 1.2.55 (INMO 2020 P4). Let n > 2 be an integer and let 1 < a1 ≤ a2 ≤ ·· · ≤ an be
n real numbers such that a1 +a2 + · · ·+an = 2n. Prove that

a1a2 . . .an−1 +a1a2 . . .an−2 + · · ·+a1a2 +a1 +2 6 a1a2 . . .an.

Solution. For convenience, let Pi = a1a2 . . .ai. Apply Chevbyshev’s inequality on 1 < P1 <
P2 < .. . < Pn−1 and a1 ≤ a2 ≤ . . .≤ an gives

(P1 +P2 + . . .+Pn)≥
1
n
(a1 +a2 + . . .+an)(1+P1 +P2 + . . .+Pn−1)

= 2(1+P1 +P2 + . . .+Pn−1)

which a simple rearranging makes this equivalent to the conclusion. Equality holds if and only
if a1 = a2 = · · ·= an = 2.

Problem 1.2.56 (Vasile Cirtoaje). Let a1,a2, ...,an be nonnegative reals such that a1 +
a2 + ...+an = n. Prove that

(n+1)
(
a2

1 +a2
2 + ...+a2

n
)
≥ n2 +a3

1 +a3
2 + ...+a3

n

Solution. Assume WLOG that a1 ≥ a2 ≥ ...≥ an. Replacing n2 with

n(a1 +a2 + ...+an,)

the desired inequality rewrites as
n

∑
i=1

[
(n+1)a2

i −nai−a3
i
]
≥ 0

or
n

∑
i=1

(ai−1)
(
nai−a2

i
)
≥ 0.

Since
a1−1≥ a2−1...≥ an−1,

and since
(
nai−a2

i
)
−
(

na j−a2
j

)
≥ 0, we have

na1−a2
1 ≥ na2−a2

2...≥ nan−a2
n.

We apply Chebyshev’s Inequality to get

n
n

∑
i=1

(ai−1)
(
nai−a2

i
)
≥

[
n

∑
i=1

(ai−1)

][
n

∑
i=1

(nai−a2
i )

]
as desired. Equality holds if and only if a1 = a2 = ...= an = 1.
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Problem 1.2.57 (Romania TST 2006). Let a,b,c be positive real numbers such that a+b+c=
3. Prove that:

1
a2 +

1
b2 +

1
c2 ≥ a2 +b2 + c2.

Solution. Rewrite the inequality in the form

∑
cyc

a2b2 ≥ a2b2c2
∑
cyc

a2 ⇐⇒ ∑
cyc

a2b2 (1+ c+ c2 + c3)(1− c)≥ 0.

Notice that if ab≤ 2 and a≥ b then

a2(1+b+b2 +b3)≥ b2(1+a+a2 +a3).

This one is equivalent to
(a−b)(a+b+ab−a2b2)≥ 0

which is obviously true because ab≤ 2. From this property, we conclude that if all ab,bc,ca
are smaller than 2 then Chebyshev inequality yields

∑
cyc

a2b2 (1+ c+ c2 + c3)(1− c)≥

(
∑
sym

a2b2 (1+ c+ c2 + c3))(
∑
sym

(1− c)

)
.

Otherwise ab≥ 2. Clearly, a+b≥ 2
√

2, so c≤ 3−2
√

2 and c2 ≤ 1
9 . That means

1
a2 +

1
b2 +

1
c2 ≥ 9≥ a2 +b2 + c2.

The proof is finished. Equality holds for a = b = c = 1.

1.2.9 Minkowski’s Inequality

Theorem 1.2.9 (Minkowski’s Inequality) — Let r > s be nonzero real numbers, then for any
sequence of positive reals {ai j}n

1≤i< j≤n, the following inequality holds:

 m

∑
j=1

(
n

∑
i=1

ar
i j

)s/r
1/s

≥

 n

∑
i=1

(
m

∑
j=1

as
i j

)r/s
1/r

Note that if either r or s is zero, then Minkowski’s Inequality becomes Holder’s Inequality.
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Remark. The Holder’s Inequality is a consequence of Minkowski’s Inequality. The proofs are
similar and different in different aspects. We invite the courageous reader to prove both Holder’s
and Minkowski’s and find the similarity and differences.

Problem 1.2.58. Given a,b,c > 0, find the minimum value of√
(a− x)2 + y2 + z2+

√
x2 +(b− y)2 + z2+

√
x2 + y2 +(c− z)2+

√
(a− x)2 +(b− y)2 +(c− z)2

Where x,y,z are real numbers.

Solution. By Minkowski’s Inequality, the answer turns out to be: 2
√

a2 +b2 + c2

Problem 1.2.59 (AIME 1991). For positive integer n, define Sn to be the minimum value of
the sum

n

∑
k=1

√
(2k−1)2 +a2

k ,

where a1,a2, . . . ,an are positive real numbers whose sum is 17. There is a unique positive integer
n for which Sn is also an integer. Find n.

Solution. By Minkowski’s Inequality, we have

Sn ≥

√√√√( n

∑
k=1

(2k−1)

)2

+

(
n

∑
k=1

ak

)2

or
Sn ≥

√
n4 +289 ∈ Z

So, there exists an integer m for which n4 +289 = m2, or

(n2 +m)(n2−m) = 289

we find that n = 12 and m = 145, revealing the value of n as 12

Problem 1.2.60 (OMO Fall 2013). Let ABCD be a quadrilateral with AD = 20 and BC = 13.
The area of 4ABC is 338 and the area of 4DBC is 212. Compute the smallest possible perimeter
of ABCD.
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Solution. Let B = (0,0) and C = (13,0). Then A = (a,52) and D =
(
b, 424

13

)
for some a

and b. Now it remains to minimize the function

f (a,b) =
√

a2 +522 +

√
(b−13)2 +

(
424
13

)2

subject to (b−a)2 +

(
252
13

)2

= 202, or b−a =
64
13

. Substituting b =
64
13

+a shows that we

have to minimize

f (a) =
√

a2 +522 +

√(
a− 105

13

)2

+

(
424
13

)2

.

Using Minkowski’s we get

f (a) =
√

a2 +522 +

√(
105
13
−a
)2

+

(
424
13

)2

≥

√(
105
13

)2

+

(
52+

424
13

)2

= 85.

Thus the minimum perimeter is 85+20+13 = 118 .

Problem 1.2.61 (Moldova TST 2014). Let a,b ∈ R+ such that a+b = 1. Find the minimum
value of the following expression:

E(a,b) = 3
√

1+2a2 +2
√

40+9b2.

Solution. Write inequality as:√
1+a2 +a2 +

√
1+a2 +a2 +

√
1+a2 +a2 +

√
62 +22 +9b2 +

√
62 +22 +9b2

And apply Minkowski Inequality:

E(a,b)≥
√

(1+1+1+6+6)2 +(a+a+a+2+2)2 +(a+a+a+3b+3b)2

=
√

225+(3a+4)2 +(3a−6)2 =
√

277+6(3a2−2a)

Define function f : (0,1]→ R, f (x) = 3x2−2x. Then we get f ′(x) = 6x−2. For x ∈
(
0; 1

3

]
the funtion is decreasing, and for x ∈

[1
3 ,1
]
the function is increasing. So minimum value of

the function is f
(

1
3

)
=−1

3
. So we get:

E(a,b)≥
√

277+6(3a2−2a)≥
√

277−2 = 5
√

11.

Equality occurs iff a = 1
3 ,b = 2

3 .
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Problem 1.2.62 (Baltic Way 2000). Prove that for all positive real numbers a,b,c we have√
a2−ab+b2 +

√
b2−bc+ c2 ≥

√
a2 +ac+ c2

Solution. Using Minkowski’s inequality:√√√√(a
√

3
2

)2

+
(a

2
−b
)2

+

√√√√(c
√

3
2

)2

+
(

b− c
2

)2
≥
√(a

2
− c

2

)2
+

3
4
(a+ c)2 =

√
a2 + ca+ c2.

Problem 1.2.63. Let a,b,c,d be positive real numbers then prove that

∑
cyc

√
a2 +b2−ab

√
3≥ a

√
3.

Equality holds if and only if
a = b

√
3 = 2c = d

√
3.

Solution. Using Minkowski’s inequality:

√
a2−ab

√
3+b2 +

√
b2−bc

√
3+ c2 =

√√√√a2

4
+

(
a
√

3
2
−b

)2

+

√√√√c2

4
+

(
b− c

√
3

2

)2

√
a2−ab

√
3+b2 +

√
b2−bc

√
3+ c2 ≥

√√√√(a+ c
2

)2

+

(
a
√

3− c
√

3
2

)2

√
a2−ab

√
3+b2 +

√
b2−bc

√
3+ c2 ≥

√
3a2

4
+
(a

2
− c
)2
≥ a
√

3
2

(1)

Equality when and only if:
a
2
− c = 0,

a
c
=

a
√

3−2b
2b− c

√
3
⇐⇒ a = 2c, a = b

√
3

√
c2− cd

√
3+d2 +

√
d2−da

√
3+a2 =

√√√√c2

4
+

(
c
√

3
2
−d

)2

+

√√√√a2

4
+

(
d− a

√
3

2

)2

√
c2− cd

√
3+d2 +

√
d2−da

√
3+a2 ≥

√√√√(c+a
2

)2

+

(
c
√

3−a
√

3
2

)2

√
c2− cd

√
3+d2 +

√
d2−da

√
3+a2 ≥

√
3a2

4
+
(a

2
− c
)2
≥ a
√

3
2

(2)

Equality when and only if: a = 2c, a = d
√

3
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Thus (1)+(2) gives

∑

√
a2−ab

√
3+b2 ≥ a

√
3,

and equality holds if and only if a = b
√

3 = 2c = d
√

3.

1.2.10 Practice Problems

We have now come to the end of the handout, and we therefore conclude with a set of practice
problems.

Practice Problems.

1. Let 0≤ a≤ b≤ c≤ d such that ab+bc+ cd +da+ac+ad = 6.

(i) Find the maximum of abcd(a+ c)

(ii) Find the maximum of abcd(a+ c)8

2. Let a≥ b≥ c > 0 and abc = 1. Prove or disprove that

a+ c2 ≥ 5 5
√

4
4

b

3. Let a,b,c≥ 0 and ab+bc+ ca+abc = 1. Prove that

a
a+bc

+
b

b+ ca
+

c
c+ab

≤ 2

4. Let a,b,c≥ 0. Prove that

a2

2a2 +bc
+

b2

2b2 + ca
+

c2

2c2 +ab
≤ 1

5. Let a≥ 2,b≥ 2. Prove that

a
a+b2 +1

+
b

b+a2 +1
≤ 4

7
.

6. Let a,b be nonnegative reals such that a+b≤ 2.Prove that

(1+a2)(1+b2)≥

[
1+
(

a+b
2

)2
]2
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7.(Mathlinks) Let a,b,c be nonnegative reals such that a+b+ c = 2. Prove that

(a3 +b3)(b3 + c3)(c3 +a3)≤ 2

8.(Mathlinks) Let a1,a2, ...,an be positive real numbers. Prove that

n

∑
i=1

ai+1

ai
≥

n

∑
i=1

√
a2

i+1 +1
a2

i +1

where an+1 = a1

9.(Mathlinks) Let x,y,z be nonnegative real numbers. Prove that

(x+2y+3z)(x2 + y2 + z2)≥ 20−2
√

2
27

(x+ y+ z)3

When does equality hold?

10. Prove that for all reals a,b,c,d,e,

2a2 +b2 +3c2 +d2 +2e2 ≥ 2(ab−bc− cd−de+ ea)

When does equality hold?

11. Let a,b,c be nonnegative real numbers such that a+b+ c = 1. Prove that

4≥ (3a2 +1)(3b2 +1)(3c2 +1)≥ 64
27

12.(Rama1728) Let a,b,c be reals such that abc = 1. Prove that

∑
cyc

a3

bc+ab
≥ a+b+ c

2

13. Let a,b,c≥−1 and a3 +b3 + c3 = 1 . Prove that

a+b+ c+a2 +b2 + c2 ≤ 4.

When does the equality hold ?

13.(USA TST 2010) Let a,b,c be positive real numbers such that abc = 1. Show that

1
a5(b+2c)2 +

1
b5(c+2a)2 +

1
c5(a+2b)2 ≥

1
3
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14.(Mathematics and Youth Magazine) Given positive real numbers x,y,z satisfying

x2 + y2−2z2 +2xy+ yz+ zx≤ 0,

find the minimum of

P =
x4 + y4

z4 +
y4 + z4

x4 +
z4 + x4

y4

15. Let a,b,c be the side-lengths of a triangle. If 0 < r ≤ 1, then

a2b(ar−br)+b2c(br− cr)+ c2a(cr−ar)≥ 0

16. If ai > 0(i = 1,2, . . . ,n) and

L(k) =

(
∑

cyclic

ak
1

ak−1
1 +ak−1

2

) ∑
cyclic

ak−1
2

a1

(
ak−1

1 +ak−1
2

)
 , then

prove that
L(k)≥ L(k−1)≥ ..≥ L(0)

17.(Aritra12) Prove that the given inequality is true where abc = 1 , a,b,c > 0,

∑
cyc

ac(a+ c5)+1
b12 +a(a13c+1)

≤ a6 +b6 + c6

18. Let a,b,c,d,e, f be positive real numbers. Prove the inequality

a
b+ c

+
b

c+d
+

c
d + e

+
d

e+ f
+

e
f +a

+
f

a+b
≥ 3

19. Prove that for real numbers x1,x2,x3,y1,y2,y3 such that

x1x2 + x2x3 + x3x1 ≥ 0

and
y1y2 + y2y3 + y3y1 ≥ 0

the following inequality holds.

(y2 + y3)x1 +(y3 + y1)x2 +(y1 + y2)x3 ≥ 2
√
(x1x2 + x2x3 + x3x1)(y1y2 + y2y3 + y3y1)

Also find if equality holds ?
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20.(Involving some FE) Find all functions f : N→ N with f (1) = 1 and

f (x+5)≥ f (x)+5 and f (x+1)≤ f (x)+1

holds for all x ∈ N

21. Let a,b,c be positive real numbers such that a+b+ c = 3. Prove that:√
3a+

1
b
+

√
3b+

1
c
+

√
3c+

1
a
≥ 6

22. Let a,b,c be positive real numbers. Prove that

∑
cyc

√
(a+b−1)2 +2c2 ≥

√
3

23.(Grotex) Let a,b,c be non-negative real numbers. Prove that

√
a3 +2+

√
b3 +2+

√
c3 +2≥

√
9+3

√
3

2
(a2 +b2 + c2).

24.(Kunihiko Chikaya) Let a, b, c be positive real numbers. Prove that
√

a+b+ c√
ab+

√
bc+
√

ca

(√
b2

a
+

c2

b
+

√
c2

b
+

a2

c
+

√
a2

c
+

b2

a

)
≥
√

6.

25.(sqing) Let a,b be positive real numbers such that a+b = 1. Prove that

a
√

b2 +1+b
√

a2 +1≥
√

20a2b2 +(a−b)2.

26.(sqing) Let a,b,c,d be positive real numbers . Prove that

ab
c+d

+
bc

d +a
+

cd
a+b

+
da

b+ c
+

ac
b+d

+
bd

c+a
≥ 3

4
(a+b+ c+d).

27.(sqing) Let a,b be positive numbers such that ab≥ 1. Prove that

a
√

b+1+b
√

a+1+
√

a+b≥ 3
√

2.

28.(sqing) Let a,b be positive real numbers such that a+b = 1. Prove that

(a)
√

20a2b2 +(a−b)2 ≤ a
√

1+b2 +b
√

1+a2 ≤ 4
√

5ab+(a−b)2

(b)

√
12a2b2 +

1
4
(a−b)2 ≤ a

√
1−b2 +b

√
1−a2 ≤ 2

√
3ab+

1
4
(a−b)2.
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30.(S. Lenny) Let a,b be nonnegative real numbers such that a+b = 2. Prove that

4a
√

b+1+4b
√

a+1+
√

2≥ 9
√

ab+1

31.(sqing) Let a,b be positive numbers such that a+b = 2. Prove that

(a) (a+
√

b2 +1)(b+
√

a2 +1)≥ 3+2
√

2

(b) a(
√

b2 +1−b)+b(
√

a2 +1−a)≥ 2(
√

2−1)

32.(man11) If a,b,c ∈ R and a+b+ c = 2.Then find the minimum of√
a2 +7+

√
b2 +11+

√
c2 +13

33.(a-simple-guy) Let a,b,c be positive real numbers with sum 3. Prove that:√
a2 +

√
b2 + c2 +

√
b2 +

√
c2 +a2 +

√
c2 +

√
a2 +b2 ≥ 3

√√
2−1

34.(CSS-MU) Let a,b,c be real numbers satisfying a+b+ c = 3. Show that

1
2a2 +7

+
1

2b2 +7
+

1
2c2 +7

≤ 1
3

35.(danciulian) Let a≥ c≥ 0 and b≥ d ≥ 0. Prove that

(a+b+ c+d)2 ≥ 8(ad +bc).

36.(Samin Riasat) Let a1, a2, ..., an ∈ [0,1] and λ be real number such that a1+a2+ ...+an =
n+1−λ . For any permutation (bi)

n
i=1 of (ai)

n
i=1, prove that

a1b1 +a2b2 + ...+anbn ≥ n+1−λ
2

. 37.(Known Result) Given that a,b,c are positive real numbers, and abc = 1. Prove that , for
any natural number k ≥ 2

ak

a+b
+

bk

b+ c
+

ck

c+a
≥ 3

2
38.(OIM/IOM) Find all positive real solutions of the system of equations{

x1 + x2 + ...+ x1994 = 1994
x4

1 + x4
2 + ...+ x4

1994 = x3
1 + x3

2 + ....+ x3
1994

39.(Kyiv Mathematical festival) Let a,b,c≥ 0 and a+b+ c≥ 3. Prove that

a4 +b3 + c2 ≥ a3 +b2 + c
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40.(Smathematician) Let a,b,c ∈ R+ and n≥ 2 is an integer. Prove:-

an

b+ c
+

bn

c+a
+

cn

a+b
≥
(

2
3

)(n−2)(a+b+ c
2

)(n−1)

41.(lahmacun) Let a1,a2, . . . ,an be distinct positive integers. Prove that

a1

12 +
a2

22 + · · ·+
an

n2 ≥
1
1
+

1
2
+ · · ·+ 1

n

42.(Outwitter) For a,b,c ∈ R+ and abc = 1. Prove that

c
b
+

b
a
+

a
c
≤ a3b+b3c+ c3a

43.(Didier) Let a,b,c be the sides of an acute triangle. Prove that√
a2 +b2− c2 +

√
a2−b2 + c2 +

√
b2 + c2−a2 ≤

√
3(ab+bc+ ca)

44.(2013 China TST) Let k ≥ 2 be an integer and let a1,a2, . . . ,an,b1,b2, . . . ,bn be nonnega-
tive real numbers. Prove that(

n
n−1

)n−1
(

1
n

n

∑
i=1

a2
i

)
+

(
1
n

n

∑
i=1

bi

)2

≥
n

∏
i=1

(a2
i +b2

i )
1
n

45.(Lonesan) For any triangle ABC, prove that:

s≥ 3
√

3r+
1
2

√
(s2−12Rr−3r2)(R−2r)

R

46.(USAMO 2000) Let a1,b1,a2,b2, . . . ,an,bn be nonnegative real numbers. Prove that

n

∑
i, j=1

min{aia j,bib j} ≤
n

∑
i, j=1

min{aib j,a jbi}.

47.(CCNHSMO 2012) Let a, b, c be positive real numbers . Prove that(
a3 +

1
b3 −1

)(
b3 +

1
c3 −1

)(
c3 +

1
a3 −1

)
≤
(

abc+
1

abc
−1
)3

48.(sqing) Let a≥ 4,b,c≥ 0,a+b≤ 2c,x,y,z ∈ R. Prove that

(a−3)(b− x2− y2− z2)≤ (c− x− y− z)2.
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49.(CSEMO 2020) Let 0≤ a1 ≤ a2 ≤ ·· · ≤ an−1 ≤ an and a1 +a2 + · · ·+an = 1. Prove that:
For any non-negative numbers x1,x2, · · · ,xn;y1,y2, · · · ,yn , have(

n

∑
i=1

aixi−
n

∏
i=1

xai
i

)(
n

∑
i=1

aiyi−
n

∏
i=1

yai
i

)
≤ a2

n

(
n

√
n

∑
i=1

xi

n

∑
i=1

yi−
n

∑
i=1

√
xi

n

∑
i=1

√
yi

)2

.

50.(Problems from the Book) Let a1,a2, . . . ,an,b1,b2, . . . ,bn be real numbers such that

∑
1≤i< j≤n

aia j > 0.

Prove the inequality(
∑

1≤i 6= j≤n
aib j

)2

≥

(
∑

1≤i6= j≤n
aia j

)(
∑

1≤i6= j≤n
bib j

)
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